(Para-)Hermitian and (para-)Kähler submanifolds of a para-quaternionic Kähler manifold
نویسندگان
چکیده
منابع مشابه
Homogeneous Para - Kähler Einstein
A para-Kähler manifold can be defined as a pseudoRiemannian manifold (M, g) with a parallel skew-symmetric paracomplex structures K, i.e. a parallel field of skew-symmetric endomorphisms with K = Id or, equivalently, as a symplectic manifold (M, ω) with a bi-Lagrangian structure L, i.e. two complementary integrable Lagrangian distributions. A homogeneous manifold M = G/H of a semisimple Lie gro...
متن کامل4 - Dimensional ( Para ) - Kähler – Weyl Structures
We give an elementary proof of the fact that any 4-dimensional para-Hermitian manifold admits a unique para-Kähler–Weyl structure. We then use analytic continuation to pass from the para-complex to the complex setting and thereby show that any 4-dimensional pseudo-Hermitian manifold also admits a unique Kähler–Weyl structure.
متن کاملLightlike Submanifolds of a Para-Sasakian Manifold
In the present paper we study lightlike submanifolds of almost paracontact metric manifolds. We define invariant lightlike submanifolds. We study radical transversal lightlike submanifolds of para-Sasakian manifolds and investigate the geometry of distributions. Also we introduce a general notion of paracontact Cauchy-Riemann (CR) lightlike submanifolds and we derive some necessary and sufficie...
متن کاملPara-Kahler tangent bundles of constant para-holomorphic sectional curvature
We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...
متن کامل1 3 Ju n 20 08 HOMOGENEOUS PARA - KÄHLER EINSTEIN MANIFOLDS
A para-Kähler manifold can be defined as a pseudoRiemannian manifold (M, g) with a parallel skew-symmetric paracomplex structures K, i.e. a parallel field of skew-symmetric endomorphisms with K = Id or, equivalently, as a symplectic manifold (M, ω) with a bi-Lagrangian structure L, i.e. two complementary integrable Lagrangian distributions. A homogeneous manifold M = G/H of a semisimple Lie gro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Geometry and its Applications
سال: 2012
ISSN: 0926-2245
DOI: 10.1016/j.difgeo.2012.05.001